QUOTE: Originally posted by MichaelSol AC would probably be used, but regarding DC, Milwaukee Road used a 3600 vDC system. It's 5,500 hp Little Joes used approximately 1200 amps, or 1400 if the Joe went to its overload capacity of 7000 hp. The catenary used two 500,000 cm copper wires, with auxilliary feeder cable augmenting the catenary through either a 500,000 cm copper feeder, or a 750,000 cm aluminum feeder cable, with 4,000 or 6,000 kW substations located at approximately 28 mile intervals. The system could typically handle two 5,500 hp Little Joes and a four unit Boxcab helper, 7000 hp, without overheating the catenary. It routinely paid for itself, even with relatively light usage, every 8-10 years. Best regards, Michael Sol
QUOTE: Originally posted by futuremodal QUOTE: Originally posted by MichaelSol AC would probably be used, but regarding DC, Milwaukee Road used a 3600 vDC system. It's 5,500 hp Little Joes used approximately 1200 amps, or 1400 if the Joe went to its overload capacity of 7000 hp. The catenary used two 500,000 cm copper wires, with auxilliary feeder cable augmenting the catenary through either a 500,000 cm copper feeder, or a 750,000 cm aluminum feeder cable, with 4,000 or 6,000 kW substations located at approximately 28 mile intervals. The system could typically handle two 5,500 hp Little Joes and a four unit Boxcab helper, 7000 hp, without overheating the catenary. It routinely paid for itself, even with relatively light usage, every 8-10 years. Best regards, Michael Sol Michael, In the Milwaukee thread, you had mentioned the MU'ing of electrics and diesels by the Milwaukee. Was this strictly one man control from the cab of the electric, or was there ever a situation where the diesels could draw current from the "mother" electric?
QUOTE: Originally posted by 440cuin DC is out dated for heavy main line electric trains. The modern heavy ore trains and high speed trains around the world use 50,000 volts AC. This has the capacity to give more power then the biggest diesel lashups ever used in USA.
QUOTE: Originally posted by futuremodal [In the Milwaukee thread, you had mentioned the MU'ing of electrics and diesels by the Milwaukee. Was this strictly one man control from the cab of the electric, or was there ever a situation where the diesels could draw current from the "mother" electric?
QUOTE: Originally posted by arbfbe The a.c. vs d.c. argument is really sort of a bugabo anyway. AC current travels long distances better than DC but DC has always been easier to control at the locomotive.
QUOTE: Originally posted by mark_in_utah I'm not an expert on electricfication, but it appears to be used the most where you have lightly loaded trains running on a frequent basis, such as commuter rail and light rail systems. This is probably due to the limitations of an overhead catenary. The light rail system in Salt Lkae uses a 700 VDC optimum voltage. This of course floats around due to a wide assortment of things. If we assume 700 VDC, we get a few numbers that can be scary: A 4400 hp locomotive will consume roughly 750 watts X 4400 hp = 3.3 megawatts, or 3,300,000 / 700 volts = 4700 amps!!!!!! Even if by chance the system voltage is kicked up to 2800 volts, you're still looking at close to 1200 amps. Not many wires can carry this current. Imagine if you have multiple engines pulling a coal drag..... Get the idea? You also have a substantial voltage drop along the wire, so you have to space the substations (DC power supplies) fairly close along the route. You'd have to run a LOT of freight to pay for such a system. Mark in Utah
Dave H. Painted side goes up. My website : wnbranch.com
QUOTE: Originally posted by dehusman I doubt whether any railroads have active electrification plans. It is incredibly expensive initially. It requires huge permanent physical plant investments and it requires new locomotives that are restricted to just one portion of the railroad. There are very few locomotive savings because you still need virtually the same number of engines to haul the trains away from the electrified portion and you have the added delay of changing engines at the boundry point. Bottom line is the costs are greater to electrify than the savings in fuel.
QUOTE: Originally posted by dehusman There are very few locomotive savings because you still need virtually the same number of engines to haul the trains away from the electrified portion and you have the added delay of changing engines at the boundry point.
QUOTE: Originally posted by mvlandsw QUOTE: Originally posted by futuremodal QUOTE: Originally posted by MichaelSol AC would probably be used, but regarding DC, Milwaukee Road used a 3600 vDC system. It's 5,500 hp Little Joes used approximately 1200 amps, or 1400 if the Joe went to its overload capacity of 7000 hp. The catenary used two 500,000 cm copper wires, with auxilliary feeder cable augmenting the catenary through either a 500,000 cm copper feeder, or a 750,000 cm aluminum feeder cable, with 4,000 or 6,000 kW substations located at approximately 28 mile intervals. The system could typically handle two 5,500 hp Little Joes and a four unit Boxcab helper, 7000 hp, without overheating the catenary. It routinely paid for itself, even with relatively light usage, every 8-10 years. Best regards, Michael Sol Michael, In the Milwaukee thread, you had mentioned the MU'ing of electrics and diesels by the Milwaukee. Was this strictly one man control from the cab of the electric, or was there ever a situation where the diesels could draw current from the "mother" electric? The diesels produced their own power. They did not drawany power from the electric locomotive or the overhead wire.
QUOTE: Originally posted by futuremodal What I am getting at is if it is possible for an electric loco to feed power to MU'ed diesels (and vis versa) while going through long tunnels, e.g. a hypothetical re-electrification of BNSF's Cascade Tunnel. This would make it possible to eliminate the need for time consuming ventilation of the tunnel. The thought I had was that there would be no need to electrify entire subdivisions, rather concentrate the catenary in those places with the long tunnels or steepest grades, then run a combined consist of electric and diesels as a segregated FL9. The diesels would feed the electric sans catenary (e.g. the electric loco would act as a road slug when there was no catenary), while the electric(s) would conversely feed the diesels' traction motors short term in the tunnel (where the diesels would act as road slugs).
QUOTE: Originally posted by Townsend QUOTE: quoting Michael Sol DC is better over long distances. I don't know where the idea comes from, but it is only a truism that AC is a better means of transporting high voltage power. It's previous advantage was only in the ease of conversion to different voltages, but in fact, DC is a superior form of long distance, high voltage electric power transmission. As technology has reduced the cost of converting DC power, its advantages have increased to the point where high voltage DC is now the preferred means of long distance electric power transmission. I am not to sure on that. In Britain 1500 volts was the standard before the Second World War, with the exeption of the Southern Railway, but the railways did not have the money for large scale electrification. When the money became available Post War in the 1950's it was decided to electrify at 25kv industrial frequency. For new electrification since the 1950's 25kv has been the way the go. Other voltages have been extensions to existing systems. If the difference is so small way have new projects all been high voltage AC. In addition i dont now of good loco standard motor that can handle much over 1200 volts so how would high voltage DC be used in motors.
QUOTE: quoting Michael Sol DC is better over long distances. I don't know where the idea comes from, but it is only a truism that AC is a better means of transporting high voltage power. It's previous advantage was only in the ease of conversion to different voltages, but in fact, DC is a superior form of long distance, high voltage electric power transmission. As technology has reduced the cost of converting DC power, its advantages have increased to the point where high voltage DC is now the preferred means of long distance electric power transmission.
QUOTE: Originally posted by martin.knoepfel A point for the AC-system. When South Africa built a new ore-hauler, the electrified it with high-tension AC 50 HZ
QUOTE: Originally posted by 440cuin heard the Dutch Railways (NS) are in the process of converting from DC to the 25kv European standard. I thought it was because the older DC system would be inadiquate for future loads on the railway. Why else do you think they would go through such a big expensive conversion?
QUOTE: Originally posted by arbfbe To feed trailing diesels from a lead electric would require quite a substantial bus system. The spring loaded bars on the GN Y -1 class electrics come to mind. There are some problems with that between units account the high voltages in the areas where crew members are working. The MILW boxcabs did bus the power between units but those units were almost permanently coupled and the feeders were above the roof line.
QUOTE: All the opportunities MILW management had to make their railroad work and they repeatedly chose the wrong course.
Our community is FREE to join. To participate you must either login or register for an account.