Trains.com

Modern diesel efficiency compared to first generation..

12250 views
34 replies
1 rating 2 rating 3 rating 4 rating 5 rating
  • Member since
    February 2005
  • 2,366 posts
Posted by timz on Tuesday, November 2, 2021 1:33 PM

I'll guess 20-25%.

Al Krug's table is available on the Wayback Machine -- it says an F7 or SW1500 burned 93 gallons per hour in Run 8.

https://web.archive.org/web/20100529204212/http://www.alkrug.vcn.com/home.html

 

  • Member since
    July 2001
  • From: Shelbyville, Kentucky
  • 1,967 posts
Posted by SSW9389 on Tuesday, November 2, 2021 9:00 AM

Last month on my way to our 15th Cotton Belt Regional Railroad Symposium I encountered four southbound Union Pacific trains between Brinkley and Pine Bluff. Three were parked on the mainline with their crews staring at red blocks. The fourth was walking its train over the Arkansas River Bridge and into Pine Bluff Yard. It doesn't matter how a locomotive is built if it is standing still. Later at the Arkansas Railroad Museum a retired SSW/SP/UP hoghead told me that as long as the trains are parked it was considered running time and not dwell time. 

Ed in Kentucky 

COTTON BELT: Runs like a Blue Streak!
  • Member since
    May 2003
  • From: US
  • 25,292 posts
Posted by BaltACD on Monday, November 1, 2021 9:02 PM

Erik_Mag
I'd wonder if some improvement could come from turbo-compounding, with the turbine(s) driving an alternator(s). The electronics associated with the alternator would impose the optimal load on the turbine, with the electric power put on the same bus as the main alternator. The induction compressors would also derive power from the bus, allowing for faster spool up.

I believe F1 is using similar tactics with their turbocharged hybrid gas engines, which have 'motor generators' that are driven by heat (MGU-H) and kenitic (MGU-K) energy.  The total package of 1.6L engine displacement is reported to put out over 1000 HP from both ICE and Electrical outputs.

Never too old to have a happy childhood!

              

  • Member since
    January 2019
  • 1,686 posts
Posted by Erik_Mag on Monday, November 1, 2021 8:45 PM

I'd wonder if some improvement could come from turbo-compounding, with the turbine(s) driving an alternator(s). The electronics associated with the alternator would impose the optimal load on the turbine, with the electric power put on the same bus as the main alternator. The induction compressors would also derive power from the bus, allowing for faster spool up.

  • Member since
    September 2003
  • 21,669 posts
Posted by Overmod on Monday, November 1, 2021 5:06 PM

Vastly, with the advantages of EFI and more broadly FADEC being examples.

On the other hand 'progress is not always forward' most particularly with respect to pollution control, where fuel efficiency in particular can take remarkable hits and maintenance cost can metastasize.

As I have noted, it would not be difficult to make diesel prime movers much more thermodynamically efficient with better regulatory common sense combined with adoption of larger-mass-flow SCR.

  • Member since
    February 2003
  • From: Guelph, Ontario
  • 4,819 posts
Modern diesel efficiency compared to first generation..
Posted by Ulrich on Monday, November 1, 2021 3:58 PM

How much more efficient are modern diesel locomotives compared to their first generation counterparts? 

Join our Community!

Our community is FREE to join. To participate you must either login or register for an account.

Search the Community

Newsletter Sign-Up

By signing up you may also receive occasional reader surveys and special offers from Trains magazine.Please view our privacy policy