Trains.com

PRR Duplexes and Experimental Engines ( S1, S2, T1, Q1, V1 etc.)

88273 views
763 replies
1 rating 2 rating 3 rating 4 rating 5 rating
  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Thursday, September 20, 2018 3:33 PM

Overmod
It may bear repeating that the system installed on the Q2s involved cutting-edge technology at the time, some of which could almost be considered 'classified' as it was used in gun directors. 

It is still hard to believe for me that Pennsy only used Q2s, the most powerful non-articulated locomotive for merely 4-6 years which was only equal to about 13% of GG1’s average service life despite PRR put so much effort to develop duplex for freight hauling with cutting-edge technology. We can see PRR had high hope of the duplex project from the conceptual drawing of Q1, which was a 4-6-4-6, with a streamlined design by Raymond Loewy. I wonder if there were any other technologies in late-40s which could be applied to Q2s to decrease their operating cost, assume that PRR given up the V1 project. 

 

Overmod
What truly amazes me is not so much that it wasn't installed as that no particular organized attempt was made to retrofit it when the slipperiness problem reports became so pronounced.

Exactly, the PRR Board probably knew the slipperiness problem of their duplexes since the day when S1 had her first road test in 1939. T1s was what PRR really wanted but after two years of testing (#6110 & #6111)from 1942-1944, there was enough time to determinate this idea was practical or not. If PRR thought it was impractical, they still had “plan B” like building a PRR 4-8-4 base on the design of N&W Class J 4-8-4 or building “Super K4s” like #5399 (both of them were tested by PRR and powerful enough), if not, they had enough time to train their engineers the trick and skill to handle the T1 properly, but they didn’t.

https://sites.google.com/site/pacific462steamlocomotive

Overmod

...It could be done a bit simpler than that.  The existing Jones-Motrola speedometer is driven off the rear engine, which conveniently is not the one that usually slips…

...The arrangement on 5550 will likely involve a couple of rotary encoders (4096 or 8192 steps) each with a small processor that generates speed and delta-speed (rate of change, or acceleration/deceleration) to run the lights, and (to the extent installed) control the antislip systems… 

...And therein, of course, lies a somewhat paranoiac point: since there are so many relatively simple answers to make the problem stop without expensive redesign (e.g. installing two front-end throttles on the T1s) ... why was not one of them tried?  Not for the first time do I wonder if things were being set up to fail.  PRR couldn't make any use of their wonder wartime power once they went back to 50mph commodity freight in an anticipated postwar recession.  Even before the consequences of the Great Boiler Steel Debacle reared their heads.

Very true, Overmod. so many things about PRR’s duplexes were incomprehensible, so many things should have done and could have been done. I really wish I can see the 5550 running again in person and take a ride on it......

I don’t think PRR couldn’t afford another 78 Jones-Motrola speedometer and two front-end throttles on their duplexes after their passenger ridership hit record high year after year until 1946! When Baldwin told PRR to not apply the Franklin poppet valve gear to all T1s in one single order, the PRR stubbornly rejected, when people asked the Board why not using Type B poppet valve gear instead of older version, they couldn’t provide any persuasive reason. When a PRR mechanical engineer asked why using 77’ driver on Q1, a freight engine, the Project Manager told him the engine was “well proportioned” but it was proofed wrong later. 

There were mistake after mistake, wrong decision after wrong decision, tons of money wrongly invested, a lot of check was unnecessarily signed to different parties. Who or which parties from different company, from PRR itself to Baldwin, Franklin, EMD etc, could benefited from this kind of messy management? I would say a lot. I remember you mentioned that you have some documents about “the dark side of PRR” which can be used as evidence, this further reinforced my belief that something went wrong in PRR, at least on the T1 duplex project. Compare to the development of Electric Locomotive like GG1 and K4, K5, M1 in the 1920s to 1930s, PRR never act like a lost cause like this before.

Yesterday I found a pic on eBay which showing a page from a book about PRR passenger equipment. It was surprising to know that the first postwar order of 90 lightweight coaches built by PRR Shop and ACF in Nov 1944 had quality problem which made them needed to retire in mid-1960s, meanwhile, many rebuilt P70 managed to continue serving in PC or even Amtrak era. Degenerate!

LIFE magazine 1940

  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Thursday, September 20, 2018 7:13 AM

Jones1945, in part:
https://patents.google.com/patent/US2128490A/ ... I believe many people have seen this patent drawing long time ago.

Angus Sinclair used to comment on certain 'crank' inventions regarding steam flow by noting that there were usually arrows in their patent drawings showing which way the steam flowed.  The problem being that the steam couldn't read, and therefore didn't follow the neat little arrows ... so the idea didn't work as stated.

Keep that in mind when examining this patent, and the apparent lack of enthusiasm for its teachings on PRR subsequently.  The T1 ranks as one of the least aerodynamically-satisfactory designs of all time from the standpoint of keeping smoke away from the engineer's line of sight or out of the cab.  And to my knowledge the difficulties were never meaningfully addressed...

Now take a look at the Quellmalz patent conveniently referenced for you in the Google Patents link Jones1945 provided.  (For those that read German, the original, on Espacenet, is here.  The link in Google Patents has the two-edged 'feature' of being translated, presumably via the Google Translate engine so be prepared to do some on-the-fly reinterpretation of words and grammatical structure as presented.

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Wednesday, September 19, 2018 7:27 PM
 
 
I believe many people have seen this patent drawing long time ago. Many railfan may agree that the first streamlined steam locomotive of PRR and NYC were inspired by the Burlington & Quincy’s Burlington Zephyr and Union Pacific's M10000 in early-30s, their publicity tours were so successful that I can’t recall any other similar RRs publicity tour had the same impact to the whole Nation and railway industry. Streamlining, lightweight, aerodynamic became a global trend, deeply affected the Railway industry and product design globally.
 
 
UP's brochure
 
Not long after the UP M-10000 publicity tour, PRR as the largest RR in the world also adopted  the streamlining idea to their trains like the GG1 in 1934, but the first steam locomotive received streamlining, their K4s #3768, was happened 2 years after UP M-10000's publicity tour. As you can see in the patent drawing, the direction of airflow hitting the shrouding was shown with arrows. Raymond Loewy and PRR’s Mechanical Engineer Mr. Harold A Nonemaker tested the plasticine wind tunnel model of the Streamlined K4s for almost 100 times and filed some patents for her features, but turn out #3768 was an orphan.
 
Another iconic works by Raymond Loewy was S1 #6100, but unlike #3768, T1 and many other streamlined engines from different RRs, S1’s streamlined shrouding was not patented, she got not even one Patent of her features, and there was no official record (that I can find) from PRR or any university that S1 was subjected to any wind tunnel testing, this imply that the design of the shrouding of S1 might had little thing to do with aerodynamic engineering.
 
 
 
 
 
The different treatment of S1 and #3768 may imply that the main reason of building the S1 in such a large scale was the 1939/40 New York World Fair. This was probably an open secret inside the RR industry at that time, but long forgotten. World Fair used to be one of the most important global events like the Summer Olympic at that time.  A few months before the end of 1940 New York World FairPRR purchased two T1 prototypes from Baldwin which means Baldwin and PRR already had another plan (T1) ready under the table as early as 1938-39 when they were still working with ALCO and LIMA for the design and construction of S1, another orphan before it was born. If this is true, people may need to adjust their angle before drawing conclusion about the design and performance of S1, because what PRR did on S1 was like using a concept car or 1938 The Phantom Corsair  as a taxi. ( The different is The Phantom Corsair didn't have problematic mechanical problems)
 
(Edited)
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Wednesday, September 19, 2018 2:57 PM

Jones1945
... only Q2 installed another anti-slip system and that system wasn’t maintained by the PRR constantly and it sometimes didn't work properly (IIRC.)

It may bear repeating that the system installed on the Q2s involved cutting-edge technology at the time, some of which could almost be considered 'classified' as it was used in gun directors.  Some of the problems involved the sensors for the driver rims.  For example, the drivers would neatly offset-print curve grease and traction sand up to the little wheels; this was not as serious on a Valve Pilot (which displays an advisory signal continuously) as on the Q2 where it must track both speed and acceleration for feedback control with short but 'debounced' latency.  The real problem appears to be the maintenance of the 'butterfly' valves themselves, about which I've already noted some of the "issues", and the nature of the control actuation itself, which apparently went between 'open' and 'closed' position quickly (to ensure no sticking of the valve, perhaps) rather than modulating continuously or in small steps -- bang-bang control is NOT a good idea on a high-horsepower duplex working near its effective adhesion limit.

S1 and T1 didn’t even have any device to ensure two set of separated drivers, four cylinders operating at the same speed.

What truly amazes me is not so much that it wasn't installed as that no particular organized attempt was made to retrofit it when the slipperiness problem reports became so pronounced.

I think it wouldn’t need a complicated device to at least let the crew know which set of driver is slipping, 2 speedometers with a red light or alarm above each of them, detect the speed of both front and rear engine separately, an electric device connect and monitor the speed of both speedometers, if the device detect a huge speed different between two speedometers, the red light or alarm above the speedometer showing a higher speed will be turned on or activated.

It could be done a bit simpler than that.  The existing Jones-Motrola speedometer is driven off the rear engine, which conveniently is not the one that usually slips; the mechanical drive can easily be fitted with a centrifugal switch to detect abnormally high acceleration of that engine (which would light the respective display light for a slip on that engine). 

Meanwhile, the mechanical drive can (relatively) easily be given a wiper potentiometer arrangement, for example close to the pointer, that produces a reference voltage associated with speed.   The front engine drives its own speed reference (probably an instrument generator directly producing a voltage proportional to speed in that era; easier to use a rotary encoder and circuitry later) which is then easily bridge-compared to the rear-engine voltage so that the forward-engine light illuminates ... you decide whether you want it to come on when a given number of volts' difference is detected, or illuminate brighter and brighter relative to the voltage (i.e. speed) difference between the engines. 

The arrangement on 5550 will likely involve a couple of rotary encoders (4096 or 8192 steps) each with a small processor that generates speed and delta-speed (rate of change, or acceleration/deceleration) to run the lights, and (to the extent installed) control the antislip systems.

Note that the easiest way to adjust slip on a T1, which has only the one throttle and little provision for effectively shifting valve gear on only one engine, is to split the independent brake foundation rigging so each 'half' works on only one engine, and provide a small proportional valve that (1) allows the shoes to be brought right up to the wheeltread, to trim the latency out of actuation, and (2) proportionally applies and graduatedly releases pressure to control both slip and tendency to break away.  A 'proportionally-dimming' light control signal could just as easily be a magnetic-valve actuation signal.

It requires the engineer to control the throttle manually when wheel slip occur. But I understand that PRR wanted a system which can detect and adjust the speed of both engines on a duplex automatically, like the anti-wheel slip system they used on Q2.

It's a little of both ... wound up with the idea of spending as little as po$$ible while eliminating any tendency for failure of the system either to disable the locomotive's operation or 'fail unsafe' by not indicating a potentially damaging slip condition.  Note that the phenomenon of high-speed slipping is by definition a transient situation that cannot be 'corrected' by moving the throttle (even a Franklin Precision air throttle set up to have very small control latency in both opening and closing) as speed must be maintained, and all an incremental closing of the throttle will produce is a slower road speed down to the point that transient loss of adhesion doesn't propagate effective slipping -- a speed that may be comparatively low in many cases where train resistance is near locomotive capacity.

Needless to say, any device that eliminates the issues with responding to transient slips without explicit engineer distraction is reasonable to consider (even if it costs a considerable amount to implement) provided it does not break or fail in the wrong ways when needed.  That is particularly so when the inertial forces build up as quickly as they do, and overspeed consequences can be as severe as they often are, in direct-connected reciprocating locomotives with high effective axle load.  Having a system that responds effectively in controlling and then removing overspeed in about 1/4 revolution, far quicker than any human reaction time even to a light in the cab, becomes much more important than PRR acknowledged.

If not, it was no different than telling the whole world that the idea of duplex had an unsolvable defect.

And therein, of course, lies a somewhat paranoiac point: since there are so many relatively simple answers to make the problem stop without expensive redesign (e.g. installing two front-end throttles on the T1s) ... why was not one of them tried?  Not for the first time do I wonder if things were being set up to fail.  PRR couldn't make any use of their wonder wartime power once they went back to 50mph commodity freight in an anticipated postwar recession.  Even before the consequences of the Great Boiler Steel Debacle reared their heads.

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Wednesday, September 19, 2018 7:34 AM
Thank you very much for providing us an in-depth explanation of this device, Overmod. Turn out only Q2 installed another anti-slippery system and that system wasn’t maintained by the PRR constantly and it sometimes didn't work properly (IIRC.)
 
 S1 and T1 didn’t even have any device to ensure two set of separated drivers, four cylinders operating at the same speed. I think it wouldn’t need a complicate device to at least let the crew know which set of driver is slipping, 2 speedometers with a red light or alarm above each of them, detect the speed of both front and rear engine separately, an electric device connect and monitor the speed of both speedometers, if the device detect a huge speed different between two speedometers, the red light or alarm above the speedometer showing a higher speed will be turned on or activated. It requires the engineer to control the throttle manually when wheel slip occur. But I understand that PRR wanted a system which can detect and adjust the speed of both engines on a duplex automatically, like the anti-wheel slip system they used on Q2. If not, it was no different than telling the whole world that the idea of duplex had an unsolvable defect.
 
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Tuesday, September 18, 2018 1:36 PM

Think of Nonemaker's system as a differential governor, rather than a mechanical conjugation system.  It senses the speeds of both engines in a duplex (with Spicer-drive-like shafts to a differential output) and generates a control 'error' signal when speeds differ by more than a set amount (this takes care of differential wheel wear in a way that mechanical conjugation needs slip to accommodate),  You may recall that the Q2 slip system used small wheels on driver treads for its speed sensors; the '731 patent avoids this ... but as drawn, could not be implemented on a T1 not converted to B-2 (as the governor and shafts would interfere with the rear engine type A cambox).

There is no reason why the two Spicer drives cannot be linked directly to DC proportional generators, or rotary encoders of a variety of designs, and the differential action then performed electrically (e.g. via the Q2 approach or as in contemporary gun directors) which can then include both absolute speed differential and rate-of-change in "computing" and controlling the response.

 

There are better ways of implementing the differential control 'trim' activation.  You will note that this shares the problem of the Q2 system in having to support a rotary bushing that must retain both tribology and seal in the presence of a wide temperature range including much higher than 'expected' levels of superheat.  It would be much simpler to implement this with Franklin Precision air throttle actuators, more directly, or better still with Wagner fluidic valves throttling part of the steam flow in a branched section of manifold. 

 

Nonemaker's idea was followed up by one by Steins, which was issued in 1948:

 https://patents.google.com/patent/US2440124A/en

Note that this is not the slip control applied to the Q2s, which used a completely different method of detection.

Here the idea is that back pressure increases with speed, and (certainly in theory) the two engines in a duplex could be designed so their rate of back-pressure increase with speed were close across the range of speed.  (Remember here that PRR is using common cutoff and throttle for the two engines of a duplex, and this system is removing the necessity to provide separate control of either.)  The system measures back pressure for both engines and generates a control-error signal that moves a valve to progressively impede steam flow in the 'faster' engine.  The patent language explicitly recognizes the need to damp the response both in speed and 'recovery' and mentions where this comes from.

This system retains the idea of rotary vanes acting to reduce the free area of some part of the steam supply piping, but this time keeping the bearings for the vanes entirely inside the pipe and actuating via a rod completely sealed in the steam space from an attached cylinder.  It might be interesting to see what issues would have come up in maintaining these, as there are two bearings, two pin joints, and a rod gland exposed to the effect of superheat.  I don't think any 'stiction' or heat expansion effects have any influence on effective function of the system, as both the sensing and the differential actuation are independent of the position or speed of operation of the actual control actuation.  It's an interesting 'practical' approach taken in comparison to the other methods.

Inside rods a la PLM (or the Withuhn conjugated duplex) are a poor idea mechanically for any large (or fast) steam locomotive, as it is difficult to implement them with roller bearings.  Note that on the ACE 3000 the inside cranks conjugate the two main driver pairs, which implies that these would not have cannon boxes (or the usual kind of lateral-motion device).  The only way I could figure out to get around this is to construct a stiff cage outside the sweep of the inside cranks between the two roller-bearing axleboxes; this is facilitated by using tunnel cranks (and large-diameter bearings) for the mains, but the unsprung mass of the arrangement becomes substantial although it does remove one of the critical limitations on achieving short stroke on the outside cylinders.

 

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Tuesday, September 18, 2018 4:40 AM

Synchronization of traction wheels of locomotives and the like

https://patents.google.com/patent/US2197731A

 
Inventor: Harold A Nonemaker, Thomas W Demarest
 
Original Assignee PENNSYLVANIA RAILROAD CO
Priority date 1938-09-08
 
Last night when I went through the Patents of PRR, I found this patented device: “Synchronization of traction wheels of locomotives and the like” which consist of two longitudinal shafts, reduction gear box and governors. Since mechanical engineering is never my strength, I don’t know if this device could accomplish it designing purpose or not. This patent was filed in Sep 1938, I assume that it was designed around 1937, after the design of the “Big Engine” was finalized. It seems that the consortium or design team of S1 (BLW, ALCO, LIMA and PRR) did able to foresee the potential problem of PRR’s duplex design thus a supplementary measure was considered before or during the engine’s construction.
 
I have seen many people asking on other forum or platform about if PRR ever had any plan to connect at least two sets of drivers by something like a transmission axle or not for their production T1, some even suggested using of chains and rods. We also discussed about this topic in this post earlier, some of our forum members pointed out that the 2-4-6-2 (151A) compound locomotives built in 1932 for the PLM linked the 2nd and 3rd drivers with inside connecting rods through inside cranks, making this locomotive a true 2-10-2. PLM’s duplex design is considered as a successful example of duplex locomotive, they served in PLM’s system for 24 years, which was almost 3 to 4 times longer than PRR’s duplexes.
 
Source: http://www.douglas-self.com/MUSEUM/LOCOLOCO/duplex/duplex.htm
Both inventors of this device were PRR’s Mechanical Engineer, one of them, Mr. Nonemaker patented the Streamlined K4s with Raymond Loewy in 1936. It seems that this device doesn't look like or act like an inside connecting rods but more like an electric device controlling steam flow to the cylinders. I would be grateful if our forum members willing to expound the principle and the pros and cons of such device for us, thank you very much!Yes
  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Sunday, September 16, 2018 2:00 PM
Thank you very much for the information you provided and your thorough response, Overmod. I am sure our reader will be benefited from all the things you have done on this forum.
 
 The idea of prolonging the service life of S1 after 1946 was actually part of my fantasy plan about how to rewrite history for the PRR, many things in my fantasy plan were not entirely realistic or practical. But I do have an impression that if one of the T1 (#5500) could “upgrade” its gears from Franklin Type A to Type B after an accident and PRR did have a plan to “upgrade” a few more T1s (but they dropped the idea), I thought it was a reasonable inference that upgrading S1 with a Franklin B rotary cam poppet valves wouldn’t cost too much money and trouble.
 
If it would require a lot of money and effort to overcome the technical difficulties you stated or it is proofed absolutely uneconomical after calculation, I would definitely drop this idea but repair it to a usable state instead (if it was possible after she was worn out by wartime traffic), let her and the crews who knew how to handle her since 1940 to haul the 1939 version Trail Blazer until its reequipment in 1948. On the other hand, you may remember I shared another plan which had nothing to do with my fantasy plan, which was preserve S1 in New York or Chicago Union Station like an art sculpture. (But I suspect that after the beef between PRR and Raymond Loewy on the “Triplex” project, PRR wanted to get rip of anything related to Loewy since late-40s, so this plan could only appear in my fantasy plan too Smile, Wink & Grin)
 
 In hindsight, the postwar decline was unstoppable, even if PRR didn’t execute their Dieselization plan and let the 52 T1 keep serving in the whole system, PRR didn’t need such powerful and highspeed passenger train in their system anymore not long after the coming of 1950. I guess you might remember I once said in one post that “who need a 6000 hp engine to haul a 4-car consist of the Spirit of St. Louis”
 
 Even a HSR was built on the west connecting to the Northeast, the distance would be too long  to compete with the Airline. A lot of researches had been done about the relationship between the travel distance and competitiveness of HSR and Airline. If S1 and T1 can run 156mph *constantly*on a new HSR, RR's passenger service might still had a chance within 1000 km diameter.

  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Sunday, September 16, 2018 11:56 AM

Jones1945
IF I were the PRR HQ, I would apply Franklin type B poppet valves on S1 after its retirement in mid-1946 instead of throw[ing] it on the scrapheap

One potential problem here was that the amount of work to accomplish this would have been as heroic as the T1a conversion "in reverse", with the added requirement of adjusting the port areas above the 'line of section' to flow-match what would come from and go to the relevant poppet valves, with minimum dead-space effect.  By that time the effective drawbacks of the eight-valve version of the Franklin System were becoming pretty well known to PRR, and although they used B-2 on the T1 to good effect, the situation is quite different from voluntarily adopting, then fabricating a new eight-valve setup four times for a locomotive that is already too heavy, too long, probably too slippery in the hands of most crew, etc.  In addition (assuming a world in which it would make sense to rebuild steam expensively for service) the opportunity cost of any money spent to adapt the S1, dollar for dollar, would involve money remediating T1s ... where in my opinion it would be better spent.

It is tempting to state 'because PRR was actively considering replacing Franklin System poppets with piston valves even on the T1, why consider poppets?'  But it probably should be remembered that when PRR made the T1a modifications they fully understood this would greatly reduce the true high-speed capability of the locomotives, and to me all the subsequent test results (and some of the analysis done by Joe Burgard) bears this out.  The true question is slightly different, and could be framed as 'did an 80mph railroad like PRR actually need locomotives that made distinctively high power above 115mph' ... and that idea itself, very attractive in the first postwar years, fell off very quickly in the years of ICC order 29543 and the decline of market for even the best high-speed long-distance trains that was observed.  So T1s with 'reliable old piston valves' (and the back pressure issues that retarded slip propagation) were a perfectly good "4-8-4 replacement with lower augment" in the speed ranges the railroad needed to use ... and yes, in the absence of good diesels it would have been highly interesting to have seen if the 1948 'remediations' provided a better reliability for engine effectiveness than the T1a conversion offered.

  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Sunday, September 16, 2018 11:38 AM

Jones1945
I don’t know if the author is saying the pulverized coal delivery system consisted of a pulverised-coal feed pipes was unsuccessful or the method itself was not successful

If you have access to Gottwaldt's books, I believe he covers some of this better than Doug Self did.  One issue that is seldom discussed is that the type of PC firing that was used 'mimicks' oil firing, with all the differences in detail design and firing 'strategy' which that implies.  However, the firebox design on 05 003 appears to have been little modified for the test, and the burner complexity required for high, variable, unpredictable turndown (as generally seen in even the highest-speed German passenger service) does not appear to be either present or "designed for" by the engineers involved. 

It is interesting as a 'thought experiment' of sorts to work through what would have been needed to make levitated PC firing a good solution for the class 05 locomotive (I would argue it needed conventional stoker firing and grates for baseline power, with PC injected over the grates for variable higher power output as with some dual-fuel schemes, and much better design of the radiant section than Wagner seemed to ever figure out how to do.  I would also argue that the first best use of such a system would have been not on the high-speed six-coupled power but on the class 06 Mammuts, which "failed" in part because their steam generation was inadequate for the capabilities of their running gear...)

I invite you to work through the 'primary secondary' references in the trade press to the BCR developments, including the growing rumble of dissatisfaction at the progress of development as you get into the Fifties.  I have just e-mailed Battelle (still in Columbus, OH) to see if they have or will provide records of the work done on the project.  There are some very clear contemporary discussions of the technology that describe the operative problems with the designs, particularly the time-of-flight concerns at necessary combustion density within the constraints of the 1940s loading gage and weight restrictions.  Note that there is a fundamental difficulty with Hilsch tube operation in that the 'fine' ceramic ash constituents will be kept levitated in the hot-end flow almost regardless of what can be practically done to filter them or segregate them centrifugally, but they will still glass or erode typical hard-metal alloy turbine-blade leading edges.

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Sunday, September 16, 2018 12:09 AM

Overmod

Except that it wasn't.  It was barely better than E7s, based on a tremendously skewed service density and essentially mid-Forties factor and labor prices.  None of those things still applied by the time the E8 became so many railroads' chief passenger power.  Watch what happens when you run the numbers as in Kiefer's report, but with details from 1949 or 1950...

Thanks for catching that. My memory slips again. Anyway, E8 was never my cup of tea, the golden era of railroad started fading since late-40s, all my favorite steam and early diesel locomotives were scrapped. I really don't mind these not so interesting machines like E8, E9 ruled the railroad of the States until 70s, I can only accept the fact that coal-burning steam locomotive was not economical and got defeated...... CoffeeSmile, Wink & Grin

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Saturday, September 15, 2018 11:07 PM
Overmod
What you're looking at is coal-dust firing of steam locomotives -- what we call pulverized-coal firing.  It was not proven 'unsuccessful' (there were quite good technical results, for example, in Australia in the 1950s); the problems with it were more economics ... and long-term safety ... related.
BCR and Yellott were involved with something else altogether - using pulverized fuel in a GAS turbine, in place of things like burner cans, kerosene/Jet A and whatnot.  This isn't unthinkable with a solid fuel that has been de-ashed, say with solvent refining (google SRC), but the idea was to use mine-run coal (!!!) by using a combination of techniques to separate ash from combustion gas and make any residual content so fine that it would neither erode nor 'glass' the leading edges of the turbine blading.
It didn't work, and didn't work, and didn't work, but was always cheerfully promoted as 'just around the corner' year after year after year.
Didn't work when UP tried it in their Mad Max locomotive (so big they had to number it twice during development), more's the pity.
 
 
Thank you very much, Overmod. My very limited understanding of DRG BR 05 003 is from this webpage: www.douglas-self.com/MUSEUM/LOCOLOCO/05003/05003.htm
I don’t know if the author is saying the pulverized coal delivery system consisted of a pulverised-coal feed pipes was unsuccessful or the method itself was not successful, but I understand your points.
UP’s GTELs were some very extreme experiment in my book, IIRC they were supposed to replace their 4-6-6-4 and 4-8-8-4. Their third-generation gas turbine (8500 hp) was actually very interesting, but even a PRR Q2’s power output could reach 7800 hp in mid-40s. UP’s experimental coal-burning turbine engine was so big but it could only generate 5000 hp from the steam turbine and 2000 hp from the PA-1, a much shorter PRR S1, S2 or T1 could provide 6000 to 7000 hp 20 years before 1962. Even N&W's TE-1 had a 4500 hp power output.
 
Anyway, UP’s GTELs indirectly announced the ultimate ending of coal-burning steam turbine engine.
 
 April 1947 (Railway Age, Volume 122)
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Saturday, September 15, 2018 10:16 PM

Jones1945
... their engineers managed to build the most successful 4-8-4 ever in America railroad history and their overall performance and operation cost was good enough to slap EMD E8 in the face

Except that it wasn't.  It was barely better than E7s, based on a tremendously skewed service density and essentially mid-Forties factor and labor prices.  None of those things still applied by the time the E8 became so many railroads' chief passenger power.  Watch what happens when you run the numbers as in Kiefer's report, but with details from 1949 or 1950...

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Saturday, September 15, 2018 9:08 PM

Miningman
PRR reports highest revenue for passenger and freight ever in 1946, this on top of a 17% increase in freight rates and in the very next sentence reports its first loss ever. Like what??? Some vague mumble explanation that is nothing but Orwellian doublespeak. 

 Ten years later everything is junked, duplexes are staples and razor blades, passenger trains have regressed shockingly, Ike is warning the Nation of the "military-industrial complex" because he saw and knew things that we don't know, even the incredible Pacific Electric in LA is going gone. A tragic incredibly unbelievable loss.

A future destroyed and replaced by a few men behind a curtain. Too bad we could not expose this.  

Thank you very much for the reply, Miningman. The historic annual income loss of  PRR in1946 did sound very suspicious, if the last year(1945) PRR had only 17% less revenue compared to their highest revenue record (1946) in probably a few decades, let alone PRR’s passenger service income was doing extremely well during the high of wartime traffic from 1941 to 1946 (they even needed to sold lounge car and dining car seats to handle the wartime traffic), It was hard to believe PRR reports its first historic loss this early.

According to the book "Penny Streamliner", gross annual revenue of the Trail Blazer was $2,260,000 in 1940, which was enough to build seven T1 or three S1, it is not hard to imagine tons of money PRR had earned from their Blue-Ribbon Fleet as well as their freight service during the war. Since I don’t have their financial reports, I can only assume that maybe the PRR Board made some reckless investment or banks and debtors suddenly call loans after the war. PRR had many stockholders who were noted person, I believe it wasn’t easy for PRR to do anything shady.

 

However, it was a fact that PRR was very good at wasting money after the war. I always think that it was unnecessary and too early to retire their 52 T1s in 1949-1952. Construction cost of 6110 was $310,676, assume the cost didn't change in 1945, 52 of them would cost $16 million! Note that I haven’t calculate the construction cost of 27 Q1 and Q2 yet. Horse power of one T1 (6000hp) and one Q2(8000hp) equal to three units and four units of EMD E8 respectively. In order to replace all T1 and Q2, PRR required another 264 units of E8, let alone they need even more diesel to replace those worn out K4s and I1s, M1s etc.!!

PRR already spent almost 25 million for the construction of T1 and Q2, in 1944-45, after not more than 5 years, they unnecessarily spend another tens of millions for Dieselization, let alone they bought some problematic early diesel from BLW and ALCO, this was no different than openly digging their own grave under broad daylight. If the PRR Board willing to spend an hour to read the passenger survey about the dieselization of Southern Pacific's Daylight, they should know what should had done, given that RR could never beat the speed of plane, even a DC-4.

 
  At the end of their wits, they built something to make their rival laugh.(WordPress.com)
 
Ironically, PRR’s rival NYC played the same game, their engineers managed to build the most successful 4-8-4 ever in America railroad history and their overall performance and operation cost was good enough to slap EMD E8 in the face, but the NYC Board decided to scrapped all of them like trash or worse than trash. Imagine they keep upgrade and improve the Niagara with new technology, what it would be like? But almost at the same time, NYC and PRR completely negated and dropped their new steam power development projects. I bet both of them did received the call from the “Higher Power behind the curtain”, not to mention how many spies from different parties and countries were working inside all these companies to ensure the desire of their boss were fulfilled. .
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Saturday, September 15, 2018 4:49 PM

Jones1945
I am not sure about the accurate term of it, but wasn’t burning of coal dust has been proofed unsuccessful on the German BR 05 003; the one of a kind Cab Forward Class 05, early in late-30s? I wish I have the knowledge and a chance to understand why Yellott and his research team thought it would work in their new coal burning turbine project not more than 10 years later and even patented it.

What you're looking at is coal-dust firing of steam locomotives -- what we call pulverized-coal firing.  It was not proven 'unsuccessful' (there were quite good technical results, for example, in Australia in the 1950s); the problems with it were more economics ... and long-term safety ... related.

BCR and Yellott were involved with something else altogether - using pulverized fuel in a GAS turbine, in place of things like burner cans, kerosene/Jet A and whatnot.  This isn't unthinkable with a solid fuel that has been de-ashed, say with solvent refining (google SRC), but the idea was to use mine-run coal (!!!) by using a combination of techniques to separate ash from combustion gas and make any residual content so fine that it would neither erode nor 'glass' the leading edges of the turbine blading.

It didn't work, and didn't work, and didn't work, but was always cheerfully promoted as 'just around the corner' year after year after year.

Didn't work when UP tried it in their Mad Max locomotive (so big they had to number it twice during development), more's the pity.

Wasn't there a Hirsimaki article on the coal turbine in one of the early issues of Classic Trains?

  • Member since
    September 2013
  • 6,199 posts
Posted by Miningman on Saturday, September 15, 2018 11:56 AM

Jones1945-- Your thinking is perfectly understandable. These new locomotives and trains were the vanguard of the future and the future was here and now. We read that every performance record was smashed. We could ride these fabulous trains with all their amenities, powered by duplexi and turbines. It was very exciting. 

Then it ended, just like that, a snap of the fingers. Vanished, all the claims of breaking every record swept away and no longer allowed to be spoken of. 

PRR reports highest revenue for passenger and freight ever in 1946, this on top of a 17% increase in freight rates and in the very next sentence reports its first loss ever. Like what??? Some vague mumble explanation that is nothing but Orwellian doublespeak. 

Ten years later everything is junked, duplexes are staples and razor blades, passenger trains have regressed shockingly, Ike is warning the Nation of the "military industrial complex" because he saw and knew things that we don't know, even the incredible Pacific Electric in LA is going going gone. A tragic incredibly unbelievable loss.

A future destroyed and replaced by a few men behind a curtain. Too bad we could not expose this. 

It sure was inspiring while it was here though. I've mentioned this before but even as a kid I used to think to myself ' this is too good to last'. It is quite the phenomenon, happiness and a state of well being can be attained but not kept. 

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Friday, September 14, 2018 5:19 PM
I am not sure about the accurate term of it, but wasn’t burning of coal dust has been proofed unsuccessful on the German BR 05 003; the one of a kind Cab Forward Class 05, early in late-30s? I wish I have the knowledge and a chance to understand why Yellott and his research team thought it would work in their new coal burning turbine project not more than 10 years later and even patented it.
 
 
 
 
SP’s Cab forward were oil-burning, German’s Cab forward burned coal dust, but IIRC, BR 05 003 was rebuilt as a conventional form like her sisters after the war. Coal dust or ash messed up various equipment of C&O’s M-1. SP’s gas steam turbine in 30s and PRR S2 were closest to success.
 
Some people asked me why I spent so much time on these obsolete topics, the answer is very simple; I am a recalcitrant person when facing these unsuccessful, or you could say almost successful ideas and projects but got dropped because of bad timing and bad luck. Even after 70 years, I am still unwilling to accept the fact that these projects were failure. I tried to find out what it would be like in the alternative history or another parallel universe. It is fun.
 
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Friday, September 14, 2018 12:06 PM

One-half the 'wave of the future' replacing the steam-turbine electric (the other half being the development of free-piston engines of various sorts culminating eventually in the FG9) was the aforementioned coal turbine,as for example here:

https://patents.google.com/patent/US2533866A/en

In my opinion this became more and more of a scam as development went on.  Railroads participating in the project became increasingly concerned that they were paying for commercialization of practical locomotive design that locomotive building firms would then get 'free' to peddle to their competitors.  While it became increasingly clear that Yellott and company had little if any idea how to fix the ash problem (one answer was SRC, but that wasn't price competitive in that era).  Note that UP made another run at this (with some truly heroic equipment!) and couldn't make it work a decade later.  Then along came the Clean Air Act after which no coal turbine made sense any more...

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Thursday, September 13, 2018 10:01 AM

Another attempt of Westinghouse, just one page with a draft plan of a "Double-End Turbine Locomotive". Filed in Feb 1944.

Inventor: Winston A Brecht, Jr Charles Kerr 

 

https://patents.google.com/patent/US2412866A/

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Thursday, September 13, 2018 9:40 AM

I agree with most of your points, Overmod. Even these testbeds of PRR in 40s, from S1, Q2, S2 to V1, were built oversized or overweight because of various reasons, they did provide some useful data for further development of PRR’s new engines.

 The powerful and high speed performance of S1 convinced PRR to continue the development of Duplex Steam Engine for passenger service, even she was built (IMO) unnecessary large for the 1939 New York World Fair. Q2 was a war baby, probably expected to be a one time engine, came a little bit too late but it really helped to solve the crazily heavy wartime traffic for PRR, and I personally don’t consider it seriously oversized or overweighed since I1s, M1 or J1, especially the performance and TE of J1s could easily overtake the job of Q2, so if PRR didn’t build them in such design, it was no other than officially announced that the duplex for freight service was a failure in the first phase (if there would be another phase). 

  
I understand your thought on S2; my favorite steam locomotive followed by S1. I can only say that the case of S2 was like many other great things we lost because of the World War II, it was an unfortunate of her, railfans and PRR. If she was built a 4-8-4 with light steel alloys in the first place, we might have had a fleet of streamlined steam turbine locomotive as early as the VE day. 50 production T1 order would be replaced by Class S2 for its spectacular performance, especially on high speed express train.

 A new two speeds transmission gear (two for high speed, one reverse) designed by Westinghouse was ready and Patented in 1946, Westinghouse claimed that it would replace the Reverse Turbine and aimed to solve the starting problem of S2 (I am not the best person to judge if it would work on S2 or not though), but I don’t know why no action was taken by the PRR, maybe PRR thought it wouldn’t work, maybe PRR wanted to start the development of V1 project as you stated. But the unsuccessful experiences of S2, even though PRR learned a lot of new things from it, may discouraged the PRR board and stockholders to continue the development of V1.

 At that time, diesel of EMC, EMD had already accumulated more than10 years of successful experiences and orders from different Class I railroad like UP, Santa Fe, B&O, NYC, CB&Q etc. After a few years of struggling, the PRR board chose to surrender to the diesel power in 1948. At least they tried......

 Colorado O Scale Modelers
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Thursday, September 13, 2018 7:56 AM

It may pay to remember that, as with the T1s, development of 'new' locomotives may involve a considerable period of time from first conception to practical use.  In the case of the direct-drive turbine, that period more than spans the coincidental development of practical-size diesel road power.

The development of direct-drive atmospheric-exhausting steam power was fairly well-established as both practical and economical, with the Swedish and English locomotives giving some firsthand experience. 

As with the Q2s, PRR had wartime traffic running over long distances on priority schedules, and so could make a case for trialing (this is an intentional substitution for correct English 'trying') a large straight-turbine design even if overweight at the time of construction and known to be a 'steam hog' at low speeds and high loads.  Several pieces in the Hagley collection show that motive-power people took pains to correct the 'wive's tale' that turbines develop low power at stall or low-speed conditions -- the issue is certainly not developed torque, it's steam mass flow, which is a different thing.

Even with the known faults in the detail design, it's notable that PRR was actively promoting the direct-drive design along with the V1 in 1946, which is after much of the early experience with E units (both negative and positive) was understood.  Certainly Westinghouse thought there would be a market for lighter but still large "Niagara equivalents" in that period in the late Forties that Lima was still promoting large long-compression steam locomotives.

But as soon as those staybolts started popping in the reported ways, there was no particular future for that big, heavy test platform.  And too much metal in it to be tied up in Northumberland, especially as something of a failure as 'future power of the PRR'.  Which, even turbineless, was a shame.

Yes, I enjoyed seeing all those model TE-1s.  Pity that scene couldn't have been seen in real life.

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Wednesday, September 12, 2018 1:06 PM

Overmod

An interesting thing to me is that no such effort was made by PRR.  One reason going through the Hagley material on-site is valuable is that you easily build up a chronology of what the folks 'involved in decision making' were doing and saying as technical change was happening.  The material on the S2-type turbine is positive up to some point in 1946, but almost completely negative by 1947.  Coordinating this with other material we have from that period allows some discrimination of 'steam as a whole' from the particular S2 detail design. 

 

  ebay

I guess the whole S2 Direct-drive steam turbine locomotive was not a 100% serious experiment but a product of pacification policy, tried to pacify the “Coal burning Party” in the HQ and PRR’s “Coal Burning Club” Allies, from PRR’s own higher officials, employees to everyone related to the coal business as well as PRR’s powerful stock holders (CEOs in the coal industry).

What else PRR expected to get from an overweight testbed (S2) in the first place? But at the same time, it was not, it couldn’t be (they couldn’t fool that many people at the same time) or unnecessary needed to be a 100% pacification thing, I believe even the PRR board had some people who supported dieselization still wanted to see if there was any alternative choices to prolong the coal burning empire leading by the PRR. The 6-8-6 and the turbine was already there, “let see what we can get from this thing”. Situation like this would have involved a lot of corruption.

During 1947,1948 PRR's passenger services were declining but they were far from rock bottom, if they wanted to build a “6201”, they still had tons of money to spend, even if they chose dieselization, why didn’t they do it in phases instead of negated everything about Steam power and everything they done for steam engine development in such a short time? But it has been 70 years, the rest is history. Just my two cents. Drinks

 LIFE

Overmod
Westinghouse as previously noted has a 4-8-4 turbine in a 1948 product brochure (which I believe has been linked in previous posts on at least one of the Trains forums) but by that time any serious discussion on PRR seems to have switched to the low-wheeled multiple-geared-turbine locomotives epitomized by the V1. One perhaps sad note is that we had a report several years ago that the original Westinghouse detail drawings for the N&W TE-1 main turbine had survived, rescued from a dumpster.  To the extent the S2 and V1 turbine drawings were detailed out ... they would likely have been stored in the same location, and presumably are lost.

 

Very interesting question I really concerned for a while. Before I register on this forum, I discussed this issue with some PRR fans on various platforms. I always told them I suspect the management of PRR or Baldwin destroyed as many core technologies data and information of S2 as they could on purpose, including operating and road testing footage.

I took a wild guess that maybe the turbine was a military thing, even though they were not rocket science, that PRR or the "Higher Power" didn't want such info leaked after the project was dropped. But some of this info and data were still survived and posted on the web or published in many magazines. I believe many were still hidden in some ex-PRR, Baldwin, Westinghouse official’s basement or attic. Of course  many were destroyed. (Footage of S2 and S1 were so rare, even a color pic of them were very hard to find, unlike J1, T1, Loewy's K4s. I don’t think It is just a single special case)   

Not only for S2, you could find a lot of damaged pic looked like it was saved from the trashcan or dumpster on Hagley, one example is the streamlined K4s’s wind tunnel model. There was not even ONE official footage of S1’s or T1 6110,6111 recorded during their operation from 1940 to mid-40s.

IIRC, The S2 was still appeared in the 1948 Chicago Railroad Fair but her name wasn’t officially listed on the poster, only photographic evidence existed. C&O M-1 was proofed to be a world class flop, project V1 was dropped, the only way for a Direct-drive turbine engine to succeed was a 4-8-4 base on S2 basic design, or adding a booster engine on the S2 trailing truck and modified her massive tender, S2’s tender was big enough to build a little boiler to assist the steam supply of the booster, that would at least bought the project more time. But we all know how PRR treated their experimental engine like T1, Q1, S1, S2 etc. Two more cents from me.  Coffee Smile, Wink & Grin

Saved from trashcan by Hagley

 

Overmod

BTW: There are good photographs on the Web of the innards of both the S2 main and reverse turbines.  You should find them and put them in the post instead of a generic power turbine, which is MUCH larger than the locomotive units.  I don't think many people here appreciate just how small the S2's main turbine was.

 

Here you are:Thumbs Up


Overmod

For fun: one of the potential modifications for this general idea is to provide something like an N&W class A lead truck, with its appropriate equalization, at each end of the 'main' driver pedestal casting, and put the turbine and associated equipment more or less within the rigid wheelbase (instead of over the 4-wheel truck in the original configuration).  Then place the firebox completely between the chassis units, as on a Meyer, which allows the ashpan to extend nearly to rail level and dump to the sides (as on the TE-1) or comprise sealed modules for dust-free ash handling.

I may try drawing your idea on a paper. This one is specially for you, Overmod:  the Fleet of TE-1 Thumbs Up

  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Wednesday, September 12, 2018 10:06 AM

Jones1945
A 4-8-4 built with lighter material with a booster engine, adding another control cap on the newly designed tender, a transmission gear to make it operate bidirectional like you suggested would be good enough.

An interesting thing to me is that no such effort was made by PRR.  One reason going through the Hagley material on-site is valuable is that you easily build up a chronology of what the folks 'involved in decision making' were doing and saying as technical change was happening.  The material on the S2-type turbine is positive up to some point in 1946, but almost completely negative by 1947.  Coordinating this with other material we have from that period allows some discrimination of 'steam as a whole' from the particular S2 detail design.

Westinghouse as previously noted has a 4-8-4 turbine in a 1948 product brochure (which I believe has been linked in previous posts on at least one of the Trains forums) but by that time any serious discussion on PRR seems to have switched to the low-wheeled multiple-geared-turbine locomotives epitomized by the V1. 

One perhaps sad note is that we had a report several years ago that the original Westinghouse detail drawings for the N&W TE-1 main turbine had survived, rescued from a dumpster.  To the extent the S2 and V1 turbine drawings were detailed out ... they would likely have been stored in the same location, and presumably are lost.

BTW: There are good photographs on the Web of the innards of both the S2 main and reverse turbines.  You should find them and put them in the post instead of a generic power turbine, which is MUCH larger than the locomotive units.  I don't think many people here appreciate just how small the S2's main turbine was.

For fun: one of the potential modifications for this general idea is to provide something like an N&W class A lead truck, with its appropriate equalization, at each end of the 'main' driver pedestal casting, and put the turbine and associated equipment more or less within the rigid wheelbase (instead of over the 4-wheel truck in the original configuration).  Then place the firebox completely between the chassis units, as on a Meyer, which allows the ashpan to extend nearly to rail level and dump to the sides (as on the TE-1) or comprise sealed modules for dust-free ash handling.

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Tuesday, September 11, 2018 8:12 PM

Overmod

None of the "4-8+4-8" locomotives were true bidirectional designs (you would need to start with a couple of Stroudley's tricks to try to get those frames to track in the reverse direction going into curves).  The design didn't use a symmetrical articulated underframe (like the type used on GG1s) because of the dropped firebox and ashpan requirement of the boiler (whether reversed or not).  Oddly enough, the Westinghouse patent drawing does not show this (it has the firebox drop as on a Meyer locomotive, completely between the axles, which adds length and reduces strength).   You see a different version of this accommodation on the C&O M-1 (which was also monodirectional in service) but there, too, not all the axles were appropriately steered when backing......

 

Interesting. A 4-8-4 built with lighter material with a booster engine, adding another control cap on the newly designed tender, a transmission gear to make it operate bidirectional like you suggested would be good enough. In S2 case, if the total weight of the engine and tender were 20% lighter or more but with a new design boiler with highter psi, I guess it would have got a more satisfactory result.
 
Power Engineering International

 

  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Tuesday, September 11, 2018 10:32 AM

None of the "4-8+4-8" locomotives were true bidirectional designs (you would need to start with a couple of Stroudley's tricks to try to get those frames to track in the reverse direction going into curves).  The design didn't use a symmetrical articulated underframe (like the type used on GG1s) because of the dropped firebox and ashpan requirement of the boiler (whether reversed or not).  Oddly enough, the Westinghouse patent drawing does not show this (it has the firebox drop as on a Meyer locomotive, completely between the axles, which adds length and reduces strength).   You see a different version of this accommodation on the C&O M-1 (which was also monodirectional in service) but there, too, not all the axles were appropriately steered when backing.

To provide trucks for bidirectionality with this arrangement would have involved significantly increasing the length (and probably weight) of the locomotive.  The answer, of course, was to use three-axle trucks and span bolsters, as on the N&W TE-1 (which was not designed for full bidirectional operation, but could have been)

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Tuesday, September 11, 2018 7:49 AM

Westinghouse's direct-drive steam turbine locomotive, 4-8-4-8, looks like it was supposed to be able to operate in both direction. (1945)

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Monday, September 10, 2018 5:49 AM
Overmod
 The way I remember it, the center section would be 0-6-0, but presumably with both equalization and effective Franklin-style buffering between it and the other units.  Probably the 'best' idea would be to adapt the German idea of pushing the 'adjacent' unit trucks out toward the coupled section to give some of the effect of articulation to the guiding forces on the chassis.   
 
Loewy’s plan sounds interesting, I wonder why he seldom or never show the rendering of it, even after PRR was gone. I am not sure why he wanted it to be a “Triplex”, what kind of goal he wanted to achieve? If it was a Steam turbine locomotive, direct-drive or electric, it would require a lot a space, but if it was a reciprocating steam locomotive, I don’t understand why he wanted to “chop” it into three pieces. After the argument between PRR and Raymond Loewy on this project, it seems that Lowey didn’t accept jobs from PRR anymore since early 50s, or did he?
 
 
Overmod
Unfortunately, there is no substitute for actually going to Delaware, registering, and going through the files in their various boxes and folders.  No finding aid is likely to tell you anything meaningful about the contents of many of the relevant documents! 
 
Thank you for the useful tips and info, Overmod. The only thing could stop me from going to the States right now is my health status. Since I am not going to write a book or searching a lot of info of PRR, keep searching stuff on the internet and buying books are good enough to fulfilling my curiosity, but I am really grateful for all the replies and responses I got from our forum members on Classic Train Forum!Yes
 
Overmod
First, of course, it needed to be a 4-8-4, with proper firebox construction and front-end arrangement for a turbine of expected characteristics.  I would size things for an anticipated peak hp of anywhere from 6000 to 6400 with adequate grate area, probably Cunningham circulators and Snyder preheaters; the perfected C1a boiler being a logical starting point dimension-wise as none of the PRR high-pressure things were particularly 'rightsized' for that range……
 
 
That’s an awesome plan, Overmod. Do you think if S2 was built base on your design, it could beat E7,E8 in terms of overall performance? I also believe that S2 needed to be rebuilt instead of just adding new gears or replacement of boiler like many people suggested. The body of #6200 was overweight due to wartime restriction in the first place, thus she had a 6-8-6 wheel arrangement. PRR didn’t get the best result from this overweight testbed.

I really like how it looked in this form though, imo it was one of the most good looking steam engine and made me become a Pennsy Fan.
 
EDITED:
If Westinghouse didn't take back the turbines in 1948/1949, adding a steam booster engine like some Engineers from PRR suggested may at least made the Engine remain in service longer, wasn't it? "Max up" the potential use of the 6-wheel trucks, pushing the train by using a booster engine (a high speed one?) until it reached 30mph might at least make the turbine blades moving faster when getting the train to move, decrease the time for the engine to reach the ideal speed. PRR had a lot of booster engine spared from some K4s and 6111, but the postwar decline probably killed the mood to further invest to new steam power development.
 
 
  • Member since
    September 2003
  • 21,534 posts
Posted by Overmod on Sunday, September 9, 2018 11:55 AM

Jones1945
Does it mean the Loewy Triplex was (probably) supposed to be a 0-6-0  in the middle module? I assume its “tender” and the unit for water storage had 12 wheels truck that would make it a 30-wheel engine with three modules.

 
The way I remember it, the center section would be 0-6-0, but presumably with both equalization and effective Franklin-style buffering between it and the other units.  Probably the 'best' idea would be to adapt the German idea of pushing the 'adjacent' unit trucks out toward the coupled section to give some of the effect of articulation to the guiding forces on the chassis.  
 
It is possible that the design would benefit from a Langer balancer for longitudinal surge.
 
I started went through Hagley files on its online archive these days, but It seems to me that it is not easy to find texts and document that I wants to read (PRR stuff), do you have some hints and tips could share with us? Thanks!
 
 Unfortunately, there is no substitute for actually going to Delaware, registering, and going through the files in their various boxes and folders.  No finding aid is likely to tell you anything meaningful about the contents of many of the relevant documents!

I do understand you're overseas and unlikely to have the opportunity to be here soon, but if you can, I highly recommend that you budget time to visit both the Bowes collection and the Hagley at length.  (Hagley does have accommodations for visiting scholars; it's a VERY well-run operation .. du Ponts do it right.)

 

I would like to ask you a question regarding PRR S2 6-8-6 Direct-steam turbine locomotive, would you mind giving me a hand? (please allow me to put the question here in advance so that other member could read it too). What is your opinion of the design of PRR S2 #6200, if you could rewrite history with no limitation today, how would you improve the design of S2?

First, of course, it needed to be a 4-8-4, with proper firebox construction and front-end arrangement for a turbine of expected characteristics.  I would size things for an anticipated peak hp of anywhere from 6000 to 6400 with adequate grate area, probably Cunningham circulators and Snyder preheaters; the perfected C1a boiler being a logical starting point dimension-wise as none of the PRR high-pressure things were particularly 'rightsized' for that range.  I of course would use a forced-circulation waterwall firebox, not anything with staybolts, but it's possible that with proper construction a welded-staybolt firebox could be built for this service, permitting considerably higher throttle pressure.  Lead and trailing truck lateral compliance, guiding, and equalization could be made optimal for a relatively low-augmented locomotive; the 'added' rods between the two center driver pairs might be made lighter (since they are in effect only conjugating) but fairly extensive strain testing would be needed to confirm all the various forces.  I would be highly tempted to arrange the engine for full bidirectional operation with an extended 'doghouse' arrangement being used for the reverse driving cab.

I assume you have worked through the reasons why the original S2 divided drive was not preferable to the 'final' rod configuration notably with respect to how the flexible gear in the final drive worked.  It would be difficult to work around this without some version of quill final drive, which would have to be doubled for the pair -- a couple of Timken lightweight rods is a better solution if they clear the turbine and transmission.

I would use the configuration I proposed for the Turbomotive 2 project (once heavily documented on the Web, perhaps still accessible via the Wayback Machine) which puts a double turbine symmetrically around a center pinion.  The high-pressure inlet and nozzles are inboard, and the exhaust plena are outboard (where there is plenty of room to balloon their cross-section appropriately for low turbine-exhaust back pressure at highest mass flow).  Reverse would be handled with an intermediate gear directly on this pinion (as far up in the reduction gear train as practical to minimize the tooth and bearing stresses.  An alternative would be to use a Ljungstrom counterrotating turbine (where the "stator" blading rotates the opposite way from the "rotor" but it is complicated to try to arrange the gearing to a central takeoff on such a configuration.

For many reasons the engine would be equipped with a Lewty booster arrangement, using perhaps more than one engine.  If we assume many of the auxiliaries on the engine, and other systems, are driven electrically, it is not unthinkable to implement the booster using some form of traction motors on some of the trucks -- probably the lead and tender trucks, not the ones under the ashpan -- although I suspect a hydraulic booster for the trailing truck would work well.  A booster using a positive-displacement expander is a good 'foil' to the kind of impulse-reaction turbine Westinghouse designed.

I have been told that the 600psi Babcock & Wilcox boiler design as proposed for the V1 chassis and later built for the TE-1 cannot be effectively scaled up to the 6000hp range.  I would nonetheless think that the use of chain-grate firing and high pressure, with some of the control modalities used in the N&W M-2 Automatic, might improve operation of this locomotive sufficient to allow both engineer and fireman to share the reverse cab during much of normal running.  Very substantial advantages to having the engine crew away from the backhead and ahead of the stack; those running Garratts are likely to understand the latter... and those disliking elephant ears and the somewhat wack aerodynamic theories behind the American versions of them probably liking a design permitting their absence.
  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Sunday, September 9, 2018 9:28 AM

 

http://i65.tinypic.com/14dd7w9.jpg

 

 

Please note that my last post was edited, corrected some silly mistakes and typos.

This above page is from a report of PRR in 1946, note S1 was still on the list after Dec 1945. Wheel Arrangement of S2 #6200 was 6-4-4-6 instead of 6-8-6. There were two brake shoes between the 2nd and 3rd set of driver, formed a larger gap between both set of driver on S2, but both set of driver were connected with the main gear and turbine. Prewar proposal of the direct-steam turbine engine was a 4-4-4-4, two separate rods connected two set of drivers.

 

 

  • Member since
    April 2018
  • 1,618 posts
Posted by Jones1945 on Sunday, September 9, 2018 5:29 AM
EDITED
 
Overmod
The original Loewy Triplex that I recall had the drivers under the 'central' boiler, with trucks at either end.  There was no loss of TE as fuel and water levels changed.  I remember the presentation being nonarticulated (and only six-coupled!) but that might have been just for 'show' as in so many of these locomotive-scheme patent drawings.
 
Thank you very much, Overmod! Does it mean the Loewy Triplex was (probably) supposed to be a 0-6-0  in the middle module? I assume its “tender” and the unit for water storage had 12 wheels truck that would make it a 30-wheel engine with three modules.  
 
Overmod
……in fact, I thought it interesting that the S2 comparison line goes all the way up to 85mph, higher than other locomotives traced, and is trending 'better' than the V1 (with original drive) at that point.  (The original of this graph is in the Hagley files, and is a beautiful thing in multiple colors)……
 
That’s interesting, maybe this was the reason why PRR had so high hope of S2 and tested her freight hauling ability (IIRC). The design of S2, without conventional gears, piston rods and stuffs which allowed the engine run at a high speed constantly with the help of the automatic lubrication system and the oil bathing box for the main gear. It was such a shame that she didn’t made it! 
 
By the way, I started went through Hagley files on its online archive these days, but It seems to me that it is not easy to find texts and document that I wants to read (PRR stuff), do you have some hints and tips could share with us? Thanks!
 
 
Overmod
……start with the Bowes collection finding aid at the Philadelphia seaport museum.  Note down the various patent numbers and then use Google Patents to download the PDFs (don't go by the online text; it is often poorly rendered and viewing the drawings is essential to understanding both the principles and the detail design of the various kinds of drive) …..
 
Thank you for sharing these useful hints and tips, Overmod! I will give it a try. I would like to ask you a question regarding PRR S2 6-8-6 Direct-steam turbine locomotive, would you mind giving me a hand? (please allow me to put the question here in advance so that other member could read it too). What is your opinion of the design of PRR S2 #6200, if you could rewrite history with no limitation today, how would you improve the design of S2? Thanks!)
 

SUBSCRIBER & MEMBER LOGIN

Login, or register today to interact in our online community, comment on articles, receive our newsletter, manage your account online and more!

FREE NEWSLETTER SIGNUP

Get the Classic Trains twice-monthly newsletter