Trains.com

steamers at altitude

10689 views
40 replies
1 rating 2 rating 3 rating 4 rating 5 rating
  • Member since
    December 2005
  • From: Cardiff, CA
  • 2,930 posts
Posted by erikem on Friday, July 18, 2008 1:33 AM
 selector wrote:

Thank-you for your correction, erikem.  I am happy I got it largely right...not bad for an artsy-fartsy type. Laugh [(-D]

-Crandell

You did get it mostly right - while I never worked with boilers and other steam generating hardware, I did take several courses in thermal hydraulics for my Master's degree - so I have academic as opposed to practical knowledge of steam generation.

- Erik 

  • Member since
    April 2005
  • From: Colorado Springs, CO
  • 3,590 posts
Posted by csmith9474 on Thursday, July 17, 2008 4:29 PM

Somebody should contact the Manitou and Pike's Peak railroad and ask if they have any input in regards to this. They were operating steam there in relatively recent history, so there may be somebody around there that could provide some insight. Those steamers operated at roughly 14,110' (although I don't think they have taken one all the way to the top since they were replaced for normal operations).

Smitty
  • Member since
    February 2005
  • From: Vancouver Island, BC
  • 23,330 posts
Posted by selector on Thursday, July 17, 2008 3:47 PM

Thank-you for your correction, erikem.  I am happy I got it largely right...not bad for an artsy-fartsy type. Laugh [(-D]

-Crandell

  • Member since
    July 2006
  • 2,535 posts
Posted by KCSfan on Thursday, July 17, 2008 12:49 AM

Soo,

I have to take exception with some of your statements. Please understand that my intent is clarification and I certainly don't want anyone to misconstrue my comments as criticism. 

 SOO-353 wrote:

 At high altitudes there is less back pressure on the exhaust stroke so the engine is more efficent.

This would be true only if steam was exhausted directly to the atmosphere without any restriction. However in a locomotive steam is exhausted through a nozzle and back pressure is a function of the size and configuration of this exhaust nozzle and is not affected by atmospheric pressure.

 SOO-353 wrote:

As far as the actual combustion in the firebox the effects of altidude are quite small. . . . A firebox however is a very large area that pulls air constantly through very large openings. There is no shortage of air. 

As I pointed out in a prior reply the oxygen content of atmospheric air at an elevation of 10,000 ft. is only about 70% of what it is at sea level. Thus to get the same number of BTU's out of a given volume of coal at the higher altitude about 30% more combustion air had to be supplied to the firebox.

 SOO-353 wrote:
 

In short steam engines improve their performance as altitude increases (to a point where the air is so rarified that even the massive grate area cannot supply enough, pretty darn high)

In fact steam locomotives were slightly less efficient at higher altitudes though admittedly the difference was so slight it was inconsequential for all practical purposes. There were two principal reasons for this: 1) The additional energy used by the blower to supply the greater volume of air needed for combustion, and 2) greater steam usage by the air pump. At the higher elevations the air pump had to move a greater volume of the less dense air (i.e. operate for longer durations because it was a positive displacement device) to charge and re-charge the air reservoir and train air line.

Mark

 

 

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 16, 2008 11:27 PM
 KCSfan wrote:

I've never known of a boiler pressure gage on a US steam locomotive to read psia - to the best of my knowledge they were all calibrated to indicate boiler pressure in psig.


Which is why there was some confusion between the various participants. Various boiler codes throughout the world specify things differently than US codes - I should have twigged to this earlier.

But as to your comments re the effect of atmospheric pressure, I couldn't agree more.

Cheers,

Mark.
  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 16, 2008 11:18 PM
 blue streak 1 wrote:
Guys: my whole point was at Tennessee pass the atmospheric pressure is approximately 10 psia. Now we all know that water boils at a lower temp in Denver. Having boiled eggs there it takes less heat but more time to cook them. So at Tennessee pass steam will happen at a lower temp and if the fuel is burned at the same efficiency a slight advantage should happen at the lower boiling point.

And your whole point is WRONG.

The eggs in Denver are being cooked at in water which is atmospheric pressure, in an open vessel such as a saucepan or pot.

The water in the boiler of a loco at Tennnessee pass is NOT at atmospheric pressure, but at whatever BOILER pressure the loco is operating at, say 200psi. The boiler is an ENCLOSED PRESSURE VESSEL, it is NOT OPEN TO THE ATMOSPHERE. The boiling point IS NOT LOWERED, but RAISED to whatever the boiling temperature is for that pressure.

At 200psi, for a saturated boiler, that temperature is 361.4 degrees F, which is WAY above the boiling temperature for water at 10PSI, is it not?

The boiling point in an ENCLOSED PRESSURE VESSEL is entirely unrelated to the outside air pressure.

Why is this such a difficult concept to understand?

Mark.
  • Member since
    December 2005
  • From: Cardiff, CA
  • 2,930 posts
Posted by erikem on Wednesday, July 16, 2008 9:51 PM

 selector wrote:
At the surface of a volatile liquid there is a vapour pressure.  As pressure on the surface rises, the vapour pressure "loses ground" and is eventually neutralized such that no evaporation takes place at all.

Not quite.  Evaporation will take place as long as the partial pressure of water vapor is less than the vapor pressure no matter what the atmospheric pressure is. There's a term that describes the ratio of the partial pressure of water in air to the vapor pressure of water at that air temperature - relative humidity.

In an enclosed vessel, the partial pressure of water vapor will eventually stabilize at the vapor pressure for surface temperature of water. 

  • Member since
    February 2005
  • From: Vancouver Island, BC
  • 23,330 posts
Posted by selector on Wednesday, July 16, 2008 7:55 PM
I don't follow...sorry.  The reason water boils at a lower temperature is because its vapour pressure at altitude is less than that at sea level.  At the surface of a volatile liquid there is a vapour pressure.  As pressure on the surface rises, the vapour pressure "loses ground" and is eventually neutralized such that no evaporation takes place at all.  That's in the open.  In a sealed pressure vessel, the vapour pressure is what it is based on the pressure of the gasses on the surface of the water in the vessel, not what the pressure is of the atmopshere outside the vessel.  So the heat required of the firebox is going to be what it takes to get water to sublimate to steam even though it has immense counter pressure of the steam and other gases above the surface in the boiler.  That heat will be precisely what it takes to do it in outer space or at the bottom of the Dead Sea.  It's what happens in the boiler, not outside of it that counts.
  • Member since
    December 2007
  • From: Georgia USA SW of Atlanta
  • 11,919 posts
Posted by blue streak 1 on Wednesday, July 16, 2008 4:25 PM
Guys: my whole point was at Tennessee pass the atmospheric pressure is approximately 10 psia. Now we all know that water boils at a lower temp in Denver. Having boiled eggs there it takes less heat but more time to cook them. So at Tennessee pass steam will happen at a lower temp and if the fuel is burned at the same efficiency a slight advantage should happen at the lower boiling point.
  • Member since
    July 2006
  • 2,535 posts
Posted by KCSfan on Tuesday, July 15, 2008 2:02 AM

I've never known of a boiler pressure gage on a US steam locomotive to read psia - to the best of my knowledge they were all calibrated to indicate boiler pressure in psig. On a cold locomotive they would read 0 psi if properly calibrated whether the engine was sitting in Death Valley or on top of the highest peak in the Rockies.

The highest mainline in the US was at Tennessee Pass where the Rio Grande crossed the Continental Divide at an elevation of just about 10,000 ft. Nominal atmospheric pressure at that altitude is 10.1 psi vs 14.7 at sea level. A steam locomotive whose safety valves were set to pop off at 280 psig might in actuality operate at between 250 and 280 psi depending on the demand for steam, the quality of the coal and the way it was fired. Thus the 3.6 psi difference in atmospheric pressure at the two elevations was virtually inconsequential in terms of affecting the engines thermal performance. It also made no difference whether the engine was superheated or not.

What did matter was the oxygen content of the air which at 10,000 ft is only 69% of what it is at sea level. Thus to get the same number of BTU's out of a given amount of coal it was necessary to supply a proportionately greater volume of combustion air at the higher elevation. I don't know for sure but doubt that locomotives that reguarly ran at the higher altitudes had different exhaust nozzles or grates than their tidewater counterparts. I think it more likely the need for more combustion air was supplied by the blower and the normal grate configuration allowed for the passage of the needed volume of air.

Mark 

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Sunday, July 13, 2008 4:37 PM
 erikem wrote:

 marknewton wrote:
Now I see why we are at cross purposes. You're talking gauge pressure, whereas our boiler code stipulated the use of gauges that showed absolute pressure.

My first thought is why?


I don't know, and I doubt there's anyone still alive who could answer that question. Suffice to say, it's been that way since I was a 15 year-old apprentice.

...Unless the boiler is being operated at very low pressure above atmospheric, the steam temperature and enthalpy isn't going to vary much between a given gauge pressure at sea level and the same gauge pressure at say 14,000'.


Which is exactly the point I was trying to make earlier.

Mark.
  • Member since
    December 2005
  • From: Cardiff, CA
  • 2,930 posts
Posted by erikem on Friday, July 11, 2008 10:34 PM

 marknewton wrote:
Now I see why we are at cross purposes. You're talking gauge pressure, whereas our boiler code stipulated the use of gauges that showed absolute pressure.

My first thought is why?

The mechanical stress put on a pressure vessel is due to the difference between the internal and external pressure. Unless the boiler is being operated at very low pressure above atmospheric, the steam temperature and enthalpy isn't going to vary much between a given gauge pressure at sea level and the same gauge pressure at say 14,000'.

One advantage of running a steam locomotive at altitude is that the absolute back pressure will be less, which could off an improvement in efficiency. 

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Friday, July 11, 2008 9:19 PM
 timz wrote:

...bring the pressure inside the boiler exactly equal with the air pressure outside (say 14.7 psi outside). If the gauge has been calibrated correctly, what will it read then?


14.7 psi.

Is the Bourdon tube surrounded by a vacuum? Or by air, at 14.7 psi at sea level?


Vacuum.

I looked thru my books and only found a couple of passing references to this matter-- apparently they figured the fact that the pressure gauge reading is the difference between the inside pressure and the outside pressure is too well-known to need stressing.


Your assumption then is that all boiler codes are identical throughout the world - they're not. And so we come to be at cross purposes.

Mark.
  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Friday, July 11, 2008 9:12 PM
Now I see why we are at cross purposes. You're talking gauge pressure, whereas our boiler code stipulated the use of gauges that showed absolute pressure.
  • Member since
    January 2001
  • From: Atlanta
  • 11,971 posts
Posted by oltmannd on Friday, July 11, 2008 2:29 PM

I think Timz has it right, that the pressure gauge on a steam locomotive is psig, not psia.  Pressure gauges that read other than gage pressure are rare.  A simple bordoun tube pressure gage read normally reads psig.

 http://www.dynisco.com/literature/Application%20Notes/Sanitary/GageAbsPress.pdf

-Don (Random stuff, mostly about trains - what else? http://blerfblog.blogspot.com/

  • Member since
    February 2005
  • 2,366 posts
Posted by timz on Friday, July 11, 2008 12:23 PM

 marknewton wrote:
the gauge will read zero at whatever pressure it was calibrated to off the master gauge.

Cool the boiler all the way down to outside air temperature and open a cylinder **** (see below) or a safety valve, or whatever will bring the pressure inside the boiler exactly equal with the air pressure outside (say 14.7 psi outside). If the gauge has been calibrated correctly, what will it read then?

 marknewton wrote:
the Bourdon tube that drives it only connects with the steam space inside the boiler, nowhere else. The outside air pressure has no bearing on how it reads.

Is the Bourdon tube surrounded by a vacuum? Or by air, at 14.7 psi at sea level?

I looked thru my books and only found a couple of passing references to this matter-- apparently they figured the fact that the pressure gauge reading is the difference between the inside pressure and the outside pressure is too well-known to need stressing. If you have Bruce's book it's on page 151, or if you happen to have one of Baldwin's "Locomotive Data" editions the table of "Properties of Saturated Steam" suggests the same. I'll look around and see what steam tables I can find online.

(Well I'll be darned-- in the first line, it bleeps out that word that rhymes with "lock" but begins with a "c".)

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Friday, July 11, 2008 8:08 AM
 timz wrote:

 marknewton wrote:
The pressure gauge simply shows the pressure inside the boiler, nothing more. It does not compare or give a reading relative to outside air pressure.

When we're at sea level (with the outside air pressure at 14.7 psi) and the locomotive pressure gauge reads zero, what is the pressure inside the boiler?


If the loco has gone completely cold and flat, there will be a slight vacuum in the boiler, so the pressure will be slightly less that atmospheric pressure. And as Crandell quite correctly notes, the gauge will read zero at whatever pressure it was calibrated to off the master gauge.

If you'd ever had a steam gauge apart, you'd see that the Bourdon tube that drives it only connects with the steam space inside the boiler, nowhere else. The outside air pressure has no bearing on how it reads. Why do you think otherwise?

 timz wrote:

 marknewton wrote:
I have to ask, what practical experience do you have on steam locos?

 None.


I thought as much. Then why are you trying to teach me to suck eggs, so to speak?

Cheers,

Mark.
  • Member since
    August 2003
  • From: Near Promentory UT
  • 1,590 posts
Posted by dldance on Thursday, July 10, 2008 7:19 PM

I have seen a proposal for generating energy on the moon that involves steam and a turbine.  Now that is high altitude.

dd

  • Member since
    July 2008
  • 2 posts
Posted by SOO-353 on Thursday, July 10, 2008 2:17 PM

It would seem to me that altidude does not affect the heat energy of the steam if it is in a contained vessel. Thermodynamically a steam engine is a heat engine and they work by flowing heat through a device to harnese it. The energy stored in the water molecules rapid movement is used to push a piston. Steam is a hot expanding gas. The hotter it is the more energy it contains. The cooler the steam is once its out of the engine the more efficent the engine is. At high altitudes there is less back pressure on the exhaust stroke so the engine is more efficent. This is the same principle as the seperate condenser James Watt invented!

Think about a steam turbine in a power station. the large low pressure stage uses steam that is basically 1 psi and by the time its hit the end its pulling a vacuum! This in effect "pulls" more steam through at the high pressure side, again increasing thermal efficency. 

Turbocharged engines also follow the same principle- turbos work very well at high altidude because the pressure upstream of the turbo in the manifold is immense and full of hot expanding gases. The lowered atmosheric pressure allows the turbo to spin more freely and use more of the waste exhaust. (superchargers , mechanical and turbo alike have what is known as a "critical altitude" this is the maximum altidude at which the engine will develop its rated sea level power and manifold pressure. The GE B series turbochargers used on  WWII aircraft such as the B-17 and B-24 bombers and the P-38 and P-47 fighters had a critical altitude of 25,000 feet. beyond that the engine has to be throttled down to prevent the turbo from overspeeding and being destroyed by centrifugal forces. 

 

As far as the actual combustion in the firebox the effects of altidude are quite small. at high altitude there is not enough air to flow into the cylinders of a reciprocating naturally aspiratied  IC engine to burn the fuel. Air is taken in parcel by parcel and if the air is less dence the engine simply cant breath. A firebox however is a very large area that pulls air constantly through very large openings. There is no shortage of air. 

 

In short steam engines improve their performance as altitude increases (to a point where the air is so rarified that even the massive grate area cannot supply enough, pretty darn high) and IC engines lose their performance respectivly.  (unless some means of forced induction is incorperated, even then the critical altitude is lower because of mechanical limitations on turbo RPM)

  • Member since
    February 2005
  • From: Vancouver Island, BC
  • 23,330 posts
Posted by selector on Thursday, July 10, 2008 12:52 PM

Oh, oh, oh..!  I know this one!  It would be whatever pressure the gauge is calibrated to read at its "zero" point.  If it is PSIAMSL, it should be very close to the pressure at sea level.  If it is some other arbitrary value, then it will read zero when the pressure inside the boiler reaches that point.  The pressure in the boiler, practically, will eventually match the outside pressure based on the altitude at the place where the neutralizing takes place.  If at sea level, the pressure in the boiler, via leaks here and there, will eventually reach the pressure of sea level.  But the gauge may say something entirely different...a non"zero" value depending on its calibration.

I do think the safeties are marginally sensitive to outside pressure at whatever altitude we find ourselves, but it is very small compared to the pressure working on the springs at full working pressure.

  • Member since
    February 2005
  • 2,366 posts
Posted by timz on Thursday, July 10, 2008 12:08 PM

 marknewton wrote:
The pressure gauge simply shows the pressure inside the boiler, nothing more. It does not compare or give a reading relative to outside air pressure.

When we're at sea level (with the outside air pressure at 14.7 psi) and the locomotive pressure gauge reads zero, what is the pressure inside the boiler?

 marknewton wrote:
I have to ask, what practical experience do you have on steam locos?

 None.

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Thursday, July 10, 2008 6:34 AM
Good site! I think the Alco's shown were delivered with high short hoods, and got the "chop" later on. I'm not at home at the moment, otherwise I'd find that bloody Peruvian book!

Incidentally, that same website has a page featuring my old loco:

http://www.railwayinternational.com/Australia/3801/3801.html

Not only was I working on this trip - I 'm in one of the photos! LOL! It's funny seeing all of my mates posted up on the web...

Cheers,

Mark.



  • Member since
    February 2005
  • From: Vancouver Island, BC
  • 23,330 posts
Posted by selector on Wednesday, July 9, 2008 10:34 PM

Mark, I found this site that does bring back some memories.  Although I don't seem to recall the nose on the diesel they show, the rest of it is right on the money.

http://www.kellstransportmuseum.com/Peru/FCCA/FCCA.html

 

 

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 9, 2008 8:35 PM
 timz wrote:

It doesn't make much difference, but--

You remember that a given safety-valve setting (and a given reading on the steam gauge) gives a constant difference in pressure between the inside of the boiler and the outside.


No, it doesn't make any difference. The pressure gauge simply shows the pressure inside the boiler, nothing more. It does not compare or give a reading relative to outside air pressure. If you've ever used one, or taken one apart for calibration or maintenance, you'd know this. Same for the safeties - they're mechanically set to lift at a given boiler pressure, without any reference to the outside air pressure.

 timz wrote:

So at the top of Everest the absolute pressure inside the boiler is less than it would be at sea level...


No, it isn't, and I'm buggered if I can understand why you'd think otherwise. The boiler pressure is an absolute value, and is the same at sea level or at 15,000 feet. 200psi is the same pressure at any altitude.

I have to ask, what practical experience do you have on steam locos?

Mark.
  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 9, 2008 8:22 PM
 selector wrote:

Thanks, Mark,  I'll try to find an image on the www and see if it flashes a memory or two.  It was so long ago, and I certainly would not recall what the diesel was.

Nice to have you back "on the job", BTW. Big Smile [:D]

-Crandell


Thanks, Crandell! If I can find the book there are some photos I can scan and post to jog your memory.

Cheers,

Mark.
  • Member since
    February 2005
  • 2,366 posts
Posted by timz on Wednesday, July 9, 2008 5:23 PM

 marknewton wrote:

No, no, no - altitude makes no difference. The same amount of heat is required to make steam whether the loco is at sea level or topping over Mt Everest.

It doesn't make much difference, but--

You remember that a given safety-valve setting (and a given reading on the steam gauge) gives a constant difference in pressure between the inside of the boiler and the outside. So at the top of Everest the absolute pressure inside the boiler is less than it would be at sea level-- which means saturated steam in the boiler will be slightly cooler, with slightly less energy/enthalpy per pound.

  • Member since
    February 2005
  • From: Vancouver Island, BC
  • 23,330 posts
Posted by selector on Wednesday, July 9, 2008 1:22 PM

Thanks, Mark,  I'll try to find an image on the www and see if it flashes a memory or two.  It was so long ago, and I certainly would not recall what the diesel was.

Nice to have you back "on the job", BTW. Big Smile [:D]

-Crandell

  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 9, 2008 8:04 AM
 selector wrote:

It may well have been an FM, come to think of it.


Crandell, somewhere or other I have a diesel roster for the Central, and as far as I recall they never had any FMs. IIRC the only "export" Trainmasters were those in Canada. The CdP had both Alco DL535s and DL560s, which is what I suspect you recall seeing. Again, IIRC the Alcos didn't perform well until they were fitted with barometric governors.

All the best,

Mark.
  • Member since
    December 2002
  • From: Sydney, Australia
  • 1,939 posts
Posted by marknewton on Wednesday, July 9, 2008 7:20 AM
 blue streak 1 wrote:
Yes altitude does make a difference. If the grate area is big enough to burn the fuel at say 90% efficiency less heat is needed to boil water and the steam pressure is the same. That is why feed water heaters were so important. Got the water closer to boiling so heat from boiler did not have to raise temp. So there may be better steaming at altitude. 


No, no, no - altitude makes no difference. The same amount of heat is required to make steam whether the loco is at sea level or topping over Mt Everest. The water in the boiler is not at atmospheric pressure once there is a fire on. The whole point of a boiler is that it is a sealed pressure vessel - it is not open to the atmosphere.

And there is no connection between operating altitude and the provision of a feedwater heater. There were as many railways in the world that operated at high altitudes and did not use feedwater heaters, as there were sea-level railways that did.

Mark.

Join our Community!

Our community is FREE to join. To participate you must either login or register for an account.

Search the Community

Newsletter Sign-Up

By signing up you may also receive occasional reader surveys and special offers from Trains magazine.Please view our privacy policy